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TELECOMMAND RANGING

Telecommand/telemetry ranging concept of operation:

Data flow:
The uplink is a sequence of Communications Link Transmission 
Units (CLTUs), possibly with idle between:

TC/TM ranging operates by tracking the number of symbols 
(integer and fractional) that have elapsed since the beginning of 
the most recently received CLTU.  We call this symbol count the 
TC code phase.

The uplink format:
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Figure 2. a) I-Q modulated unfiltered BPSK (dashed red), and filtered BPSK (solid red) Q component

Figure 2. b) phase-modulated filtered BPSK: I (blue) and Q (red).
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The phase-modulated signal received at the spacecraft is modeled in complex exponential form:
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Log-likelihood function:
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Maximum likelihood (ML) estimate of delay,    :  that value of delay,    , that maximizes                . t̂ t ( | )tL r!

Expanding the square term and carrying out the maximization, yields:
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CRAMER-RAO BOUNDS

The Cramer-Rao lower bound (CRB) establishes the minimum error variance for any unbiased estimate

The CRB is based on the log-likelihood function. It can be expressed in two equivalent forms:
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preferred for delay estimation leads to complicated math

Taking the first derivative of the log-likelihood function, making the substitution                        , squaring
and taking the expectation of the random terms, yields:
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NUMERICALRESULTS

• Demod-remod process generates error-free
replicas of K CLTUs that are used as reference

• Reference vector cross-correlated with stored
received samples to obtain ML delay estimates

• Delay estimate transmitted to ground on the 
next available codeword, as described in [2,3]

• Performance of ML delay estimator for random 
data, with known demod-remod reference, is 
identical to that of ML estimator for PN codes
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Figure 4. Filtered OQPSK auto-correlation function (blue) and
cross-correlation function (red) at a sample-SNR of 15 dB; 
delay of 53 samples.
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Figure 5. Correlation functions and fine delay estimates in the high-SNR regime
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Figure 6. Correlation functions and fine delay estimates in the mid-SNR region
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Figure 7.  Correlation functions and fine delay estimates in the low-SNR region
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NUMERICALRESULTS - CONTINUED

• ML delay estimator performance was determined for 
both BPSK and OQPSK signals

• ML approach was shown to achieve CRB at high SNR

BPSK CRB

BPSK simulation
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Performance of demod-remod delay estimator
• Unfiltered BPSK and OQPSK signals
• Simulated I-Q modulator 
• 1000 simulation runs per point

CRB valid for any signal-stream
122 1

2

0

( )( )
4

N
n i s

i

s iTCRB E s tt t
t

-
-

=

æ ö¶ -é ù¢= - ³ ç ÷ê úç ÷¶ë ûè ø
å

Figure 8. Comparison of ML delay estimator performance for 
unfiltered BPSK and OQPSK signals, with IQ modulation.

Windowed demod-remod delay estimator
• Unfiltered BPSK and OQPSK signals
• Simulated I-Q modulator 
• 1000 simulation runs per point
• 1/50th symbol window 

CRB valid for any signal-stream
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• Windowing at transitions shown to improve delay
estimator performance

• Narrow uncertainty windows imply this approach 
best suited for low data-rate telemetry

Figure 9. Improved delay estimator performance via windowing: 
unfiltered BPSK and OQPSK; I-Q modulation applied.
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END-TO-END RANGINGACCURACY
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• 64 symbol header sequence
• 512 symbols per LDPC codeword
• K = number of LDPC codewords
• 1 CLTU =                           symbols
• Window function W = 1 
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Figure 10. End-to-end rms delay error with OQPSK symbols as a 
function of symbol-SNR and using 100 samples/symbol, for K = 1, 10 
and 100 LDPC codewords per CLTU: uplink CRB (dashed black); 
downlink DTTL low-SNR squaring loss bound (dashed blue); 
end-to-end performance bound (solid red); simulation (red asterisks) 
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• 64 symbol header sequence
• 512 symbols per LDPC codeword
• K = number of LDPC codewords
• 1 CLTU =                           symbols
• N = total number of samples

(512 64)K´ +

CLTU structure

Figure 11. Comparison of demod-remod processing with 
random BPSK data (10 samples/symbol), and the high-SNR 
CRB for PN-coded chips in sample-SNR dB. 

Theoretical performance of end-to-end ranging derived via
Cramer-Rao bounds, and validated via MATLAB simulation

Telemetry/Telecommand based ranging was shown to
achieve same performance as PN-code based ranging
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SUMMARYAND CONCLUSIONS

• Investigated delay and range estimation performance of two-way Deep-Space links

• Demod-remod process was utilized to generate error-free reference on future spacecraft 

• Maximum likelihood algorithm for delay estimation with known reference was derived

• Cramer-Rao bounds on delay estimation error derived, compared to simulation results

• Developed pre-correlation windowing approach for up to 10 dB gain at low data-rates

• Less than 1m range error was demonstrated via analysis simulation, using realistic CLTUs 
with 100 or more LDPC codewords containing 512 symbols each

Summary and Conclusions


